МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «УФИМСКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ» БИРСКИЙ ФИЛИАЛ

ОТЯНИЧП

На заседании кафедры высшей математики и физики факультета физики и математики Протокол от «5» октября 2023 г. № 2

Зав. кафедрой Чудинов В.В.

УТВЕРЖДЕНО

Директор БФ УУНиТ

Ганеев В.В.

м.П.

«20» октября 2023 г.

УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ ПОДГОТОВКА КАДРОВ ВЫСШЕЙ КВАЛИФИКАЦИИ

ПРОГРАММА

вступительного экзамена по научной специальности

1.2.2 Математическое моделирование, численные методы и комплексы программ

Разработчики:	*
Meco	_/ к.фм.н., доцент, заведующий кафедрой Чудинов В.В.
May.	_/ к.фм.н., доцент Латыпов И.И.

ПРОГРАММА

по математике для вступительного экзамена в аспирантуру на факультете физики и математики Бирского филиала УУНиТ по специальности 1.2.2 - «Математическое моделирование, численные методы и комплексы программ»

Линейная алгебра

- 1. Понятие линейного пространства. Определение линейной зависимости и независимости векторов. Размерность линейного пространства, базис, координаты вектора, формулы преобразования координат при переходе от одного базиса к другому.
- 2. Линейные преобразования в п мерном пространстве. Матрица линейного преобразования и ее смысл. Изменение матрицы линейного преобразования при замене базиса. Область значений линейного преобразования. Обратное преобразование и его матрица. Произведение линейных преобразований.
- 3. Собственные векторы и собственные числа линейного преобразования. Характеристический многочлен. Линейная независимость собственных векторов, отвечающих различным собственным значениям. Матрица линейного преобразования в базисе из собственных векторов. Понятие жордановой формы матрицы.
- 4. Скалярное произведение и евклидовы пространства. Координатное представление скалярного произведения. Ортонормированный базис. Процесс ортогонализации.
- 5. Понятие самосопряженного линейного преобразования. Свойства его собственных чисел и собственных векторов. Матрица самосопряженного линейного преобразования.
- 6. Ортогональные преобразования. Матрица ортогонального преобразования. Ортогональные матрицы. Переход от одного ортонормированного базиса к другому.
- 7. Билинейные и квадратичные формы. Приведение квадратичной формы к каноническому виду в ортонормированном базисе. Закон инерции для квадратичных форм. Понятие положительно определенной квадратичной формы. Критерий Сильвестра.

Математический анализ

- 8. Предел последовательности. Критерий Коши. Существование предела у монотонно возрастающей, граниченной сверху последовательности. Теорема Больцано-Вейерштрасса.
- 9. Числовые ряды. Критерий Коши сходимости числовых рядов. Признаки сходимости числовых рядов (признаки сравнения, признаки Даламбера и Коши, признак Лебница).
- 10. Предел функции. Непрерывные функции. Свойства функций, непрерывных на отрезке (теорема Вейерштрасса об ограниченности и достижении точных верхней и нижней граней, теорема Коши о промежуточных значениях). Существование пределов у монотонных функций. Теорема о непрерывности функции, обратной к монотонной. Равномерная непрерывность функций. Теорема Кантора.
- 11. Дифференцируемые функции одной и нескольких переменных. Производные и дифференциал. Формула Тейлора для функций одной и нескольких переменных. Ряды Тейлора. Элементарные функции. Экстремумы функций одной и нескольких переменных. Необходимые условия экстремума. Достаточные условия экстремума.
- 12. Интеграл Римана. Необходимые и достаточные условия интегрируемости функции по Риману. Интегрируемость монотонной и непрерывной функций. Теорема о среднем. Формула Ньютона-Лейбница. Несобственные интегралы. Признаки сходимости несобственных интегралов. Признак Абеля-Дирихле. Понятие кратного интеграла по Риману. Сведение кратного интеграла к повторному. Замена переменных в кратных интегралах.
- 13. Интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла, зависящего от параметра. Теоремы о непрерывности и дифференцируемости интегралов, зависящих от параметра.
- 14. Функциональные последовательности и ряды. Равномерная сходимость. Критерий Коши равномерной сходимости. Признак Вейерштрасса. Непрерывность предела равномерно сходящейся последовательности функций. Теоремы о почленном интегрировании и дифференцировании функциональных рядов.
- 15. Ряды Фурье по тригонометрической системе. Свойства коэффициентов Фурье. Сходимость рядов Фурье для кусочно-гладких функций и непрерывно-дифференцируемых функций.

Обыкновенные дифференциальные уравнения

- 16. Методы интегрирования уравнений первого порядка (уравнения с разделяющимися переменными, однородные уравнения, линейные уравнения, уравнения в полных дифференциалах, уравнения Бернулли и Рикатти). Уравнения более высоких порядков, методы понижения порядка.
- 17. Теорема существования и единственности решения задачи Коши для уравнения первого порядка и системы п уравнений в нормальной форме. Теорема существования и единственности для системы линейных уравнений первого порядка, структура общего решения, случай простых и кратных собственных чисел.
- 18. Линейные уравнения n-го порядка с переменными коэффициентами. Фундаментальная система решений однородного уравнения и ее существование. Определитель Вронского. Формула Лиувиля. Решение однородного и неоднородного уравнения. Метод вариации произвольных постоянных.
- 19. Задача Штурма-Лиувиля. Функция Грина краевой задачи для обыкновенного дифференциального уравнения. Сведение задачи Штурма-Лиувиля к интегральному уравнению.
- 20. Автономные системы. Положение равновесия. Фазовая плоскость и фазовые траектории. Классификация положений равновесия на плоскости. Понятие устойчивости положения равновесия по Ляпунову и асимптотической устойчивости. Теорема об устойчивости по первому приближению. Функции Ляпунова и их применение.
- 21. Первые интегралы автономной системы. Линейные однородные уравнения в частных про-изводных первого порядка. Общий вид решения. Задача Коши. Понятие характеристики.
- 22. Элементы вариационного исчисления. Простейшая задача вариационного. Вариационная задача при наличии ограничений, изопараметрическая задача.

Комплексный анализ

- 23. Функции одной комплексной переменной. Дифференцируемые функции комплексной переменной. Условия Коши-Римана. Геометрический смысл модуля и аргумента производной функции комплексной переменной.
- 24. Равенство нулю интеграла от дифференцируемой функции по замкнутому контуру. Интегральная формула Коши. Регулярность равномерно сходящегося ряда регулярных функций.
- 25. Понятие аналитической функции. Степенные ряды. Первая теорема Абеля. Круг сходимости степенного ряда. Почленное интегрирование и дифференцирование степенных рядов.
- 26. Изолированные особые точки. Классификация (устранимая особая точка, полюс, существенно особая точка). Характеристика особой точки в терминах ряда Лорана.
- 27. Понятие вычета в изолированной особой точке. Вычисление контурных интегралов с помощью вычетов.

Уравнения математической физики

- 28. Линейные дифференциальные уравнения в частных производных второго порядка. Приведение к каноническому виду в точке. Классификация уравнений.
- 29. Понятие корректной начально-краевой задачи для уравнений в частных производных. Пример Адамара. Постановки начально-краевых задач для уравнений гиперболического, параболического и эллиптического типов.
- 30. Задача Коши для волнового уравнения. Формула Даламбера в случае уравнения колебания струны. Непрерывная зависимость решений от начальных данных. Негладкие начальные данные, обобщенное решение. Задача Гурса, существование и единственность решения.
- 31. Смешанная задача для уравнения колебания струны. Метод Фурье. Достаточные условия сходимости рядов (существование решения).
- 32. Задача Коши для уравнения теплопроводности. Фундаментальное решение и его смысл. Существование и единственность решения.
- 33. Смешанная задача для уравнения теплопроводности. Метод Фурье. Достаточные условия сходимости рядов (существование решения). Принцип максимума для уравнений параболического типа.
- 34. Уравнение Лапласа. Гармонические функции и их свойства. Теорема об интегральном представлении функций. Теорема о среднем для гармонических функций. Принцип максимума и минимума для гармонических функций.

35. Интегральные уравнения Фредгольма. Интегральные уравнения с вырожденным ядром. Теоремы Фредгольма для для интегральных уравнений Фредгольма второго рода с непрерывным ядром. Метод последовательных приближений и ряд Неймана.

Численные методы

- 36. Погрешности результатов численного решения задач, классификация и методы оценки.
- 37. Задача интерполяции многочленами, минимизация оценки остаточного члена. Задача наилучшего приближения. Интерполяция сплайнами.
- 38. Квадратурные формулы Ньютона-Котеса и наивысшей алгебраической степени точности, оценка остаточного члена. Составные формулы и их оптимизация, апостериорные методы оценки погрешности.
- 39. Прямые и итерационные методы решения систем линейных алгебраических уравнений и их сравнительная характеристика. Оценка погрешностей. Методы решения проблемы собственных значений. Решение систем нелинейных алгебраических уравнений и задач нелинейной оптимизации.
- 40. Аппроксимация, устойчивость, сходимость. Одношаговые и многошаговые методы решения задачи Коши для обыкновенных дифференциальных уравнений. Численные методы решения краевой задачи для уравнения второго порядка

Математическое программирование

- 41. Линейное программирование. Симплекс-метод. Теоремы двойственности.
- 42. Выпуклое программирование. Теорема Куна-Таккера. Метод возможных направлений.
- 43. Целочисленное программирование. Алгоритмы отсечения. Метод ветвей и границ. Задача коммивояжера.
- 44. Динамическое программирование. Уравнения Беллмана. Задача о рюкзаке.

ЛИТЕРАТУРА

- 1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т.1 3. М.: Наука, 1970.
- 2. Ильин В.А., Позняк Э.Г. Основы математического анализа. Т.1, 2. М.: Наука, 1982.
- 3. Курош А.Г. Курс высшей алгебры. М.: Наука, 1975.
- 4. Мальцев А.И. Основы линейной алгебры. М.: Наука, 1975.
- 5. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974.
- 6. Барбашин Е.А. Введение в теорию устойчивости. М.: Наука, 1971.
- 7. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967.
- 8. Бицадзе А.В. Основы теории аналитических функций. М.: Наука, 1984.
- 9. Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука, 1968.
- 10. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 5 изд.
- 11. Владимиров В.С., Жаринов В.В. Уравнения математической физики. М.: Физматлит, 2000.
- 12. Краснов М.Л. Интегральные уравнения. М.: Наука, 1975.
- 13. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учеб. пособие. М.: Наука, 1987.
- 14. Калиткин Н.П. Численные методы. М.: Наука, 1978.
- 15. Самарский А.А., Гулин А.В. Численные методы. М.: Наука. 1989.
- 16. Гери М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
- 17. Ху Т. Целочисленное программирование и потоки в сетях. М.: Мир, 1974.
- 18. Карманов В.Г. Математическое программирование. М.: Наука, 1980.
- 19. Корбут А.А., Финкельштейн Ю.Ю. Дискретное программирование. М.: Наука, 1969.
- 20. Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. Изд. 2-е. М.: Книжный дом «ЛИБРОКОМ», 2009. 784 с.